Global view of human protein glycosylation pathways and functions

Glycosylation is the most abundant and diverse form of post-translational modification of proteins that is common to all eukaryotic cells. Enzymatic glycosylation of proteins involves a complex metabolic network and different types of glycosylation pathways that orchestrate enormous amplification of the proteome in producing diversity of proteoforms and its biological functions. The tremendous structural diversity of glycans attached to proteins poses analytical challenges that limit exploration of specific functions of glycosylation. Major advances in quantitative transcriptomics, proteomics and nuclease-based gene editing are now opening new global ways to explore protein glycosylation through analysing and targeting enzymes involved in glycosylation processes. In silico models predicting cellular glycosylation capacities and glycosylation outcomes are emerging, and refined maps of the glycosylation pathways facilitate genetic approaches to address functions of the vast glycoproteome. These approaches apply commonly available cell biology tools, and we predict that use of (single-cell) transcriptomics, genetic screens, genetic engineering of cellular glycosylation capacities and custom design of glycoprotein therapeutics are advancements that will ignite wider integration of glycosylation in general cell biology.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Genetics of glycosylation in mammalian development and disease

Article 09 May 2024

Glycosylation: mechanisms, biological functions and clinical implications

Article Open access 05 August 2024

Glycoproteomics

Article 23 June 2022

References

  1. Fournet, M., Bonté, F. & Desmoulière, A. Glycation damage: a possible hub for major pathophysiological disorders and aging. Aging Dis.9, 880–900 (2018). PubMedPubMed CentralGoogle Scholar
  2. Steentoft, C. et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J.32, 1478–1488 (2013). This paper presents a deep analysis of the human GalNAc-type O-glycoproteome. CASPubMedPubMed CentralGoogle Scholar
  3. Zielinska, D. F., Gnad, F., Wiśniewski, J. R. & Mann, M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell141, 897–907 (2010). This paper presents a deep analysis of N-glycosites in the human proteome. CASPubMedGoogle Scholar
  4. Hart, G. W. Nutrient regulation of signaling and transcription. J. Biol. Chem.294, 2211–2231 (2019). CASPubMedPubMed CentralGoogle Scholar
  5. Hart, G. W. et al. Glycosylation of Nuclear and Cytoplasmic Proteins is as Abundant and as Dynamic as Phosphorylation. in Glyco- and Cellbiology (eds Wieland, F. & Reutter, W.) 91–103 (Springer, 1994).
  6. Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol.14, 206–214 (2018). CASPubMedPubMed CentralGoogle Scholar
  7. Varki, A. Biological roles of glycans. Glycobiology27, 3–49 (2017). CASPubMedGoogle Scholar
  8. Spiro, R. G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology12, 43R–56R (2002). CASPubMedGoogle Scholar
  9. Cummings, R. D. The repertoire of glycan determinants in the human glycome. Mol. Biosyst.5, 1087–1104 (2009). CASPubMedGoogle Scholar
  10. Joshi, H. J. et al. SnapShot: O-glycosylation pathways across kingdoms. Cell172, 632–632.e2 (2018). CASPubMedGoogle Scholar
  11. Springer, S. A. & Gagneux, P. Glycomics: revealing the dynamic ecology and evolution of sugar molecules. J. Proteom.135, 90–100 (2016). CASGoogle Scholar
  12. Chou, H. H. et al. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc. Natl Acad. Sci. USA95, 11751–11756 (1998). CASPubMedPubMed CentralGoogle Scholar
  13. Larsen, R. D., Rivera-Marrero, C. A., Ernst, L. K., Cummings, R. D. & Lowe, J. B. Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:β- d -Gal(1,4)- d -GlcNAc α(1,3)-galactosyltransferase cDNA. J. Biol. Chem.265, 7055–7061 (1990). CASPubMedGoogle Scholar
  14. Christiansen, D. et al. Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol.6, e172 (2008). PubMedPubMed CentralGoogle Scholar
  15. Stanley, P. What have we learned from glycosyltransferase knockouts in mice? J. Mol. Biol.428, 3166–3182 (2016). CASPubMedPubMed CentralGoogle Scholar
  16. Lowe, J. B. & Marth, J. D. A genetic approach to mammalian glycan function. Annu. Rev. Biochem.72, 643–691 (2003). CASPubMedGoogle Scholar
  17. Freeze, H. H., Chong, J. X., Bamshad, M. J. & Ng, B. G. Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am. J. Hum. Genet.94, 161–175 (2014). CASPubMedPubMed CentralGoogle Scholar
  18. Jaeken, J. & Péanne, R. What is new in CDG? J. Inherit. Metab. Dis.40, 569–586 (2017). CASPubMedGoogle Scholar
  19. Moremen, K. W., Tiemeyer, M. & Nairn, A. V. Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol.13, 448–462 (2012). CASPubMedPubMed CentralGoogle Scholar
  20. Joshi, H. J. et al. Glycosyltransferase genes that cause monogenic congenital disorders of glycosylation are distinct from glycosyltransferase genes associated with complex diseases. Glycobiology28, 284–294 (2018). CASPubMedPubMed CentralGoogle Scholar
  21. Hansen, L. et al. A mutation map for human glycoside hydrolase genes. Glycobiology30, 500–515 (2020). PubMedPubMed CentralGoogle Scholar
  22. Cummings, R. D. & Pierce, J. M. The challenge and promise of glycomics. Chem. Biol.21, 1–15 (2014). CASPubMedPubMed CentralGoogle Scholar
  23. Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem.54, 631–664 (1985). CASPubMedGoogle Scholar
  24. Narimatsu, H. Human glycogene cloning: focus on β3-glycosyltransferase and β4-glycosyltransferase families. Curr. Opin. Struct. Biol.16, 567–575 (2006). CASPubMedGoogle Scholar
  25. Bennett, E. P. et al. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology22, 736–756 (2012). CASPubMedGoogle Scholar
  26. Tsuji, S., Datta, A. K. & Paulson, J. C. Systematic nomenclature for sialyltransferases. Glycobiology6, v–vii (1996). CASPubMedGoogle Scholar
  27. Larsen, I. S. B. et al. Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins. Proc. Natl Acad. Sci. USA114, 11163–11168 (2017). PubMedPubMed CentralGoogle Scholar
  28. Yoshida-Moriguchi, T. & Campbell, K. P. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology25, 702–713 (2015). CASPubMedPubMed CentralGoogle Scholar
  29. Praissman, J. L. et al. The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition. eLife5, e14473 (2016). PubMedPubMed CentralGoogle Scholar
  30. Hirata, T. et al. Identification of a Golgi GPI-N-acetylgalactosamine transferase with tandem transmembrane regions in the catalytic domain. Nat. Commun.9, 405 (2018). PubMedPubMed CentralGoogle Scholar
  31. Cejas, R. B., Lorenz, V., Garay, Y. C. & Irazoqui, F. J. Biosynthesis of O-N-acetylgalactosamine glycans in the human cell nucleus. J. Biol. Chem.294, 2997–3011 (2019). CASPubMedGoogle Scholar
  32. Tu, L., Chen, L. & Banfield, D. K. A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer. Traffic13, 1496–1507 (2012). CASPubMedGoogle Scholar
  33. Liu, L., Doray, B. & Kornfeld, S. Recycling of Golgi glycosyltransferases requires direct binding to coatomer. Proc. Natl Acad. Sci. USA115, 8984–8989 (2018). CASPubMedPubMed CentralGoogle Scholar
  34. Kuhn, P.-H. et al. Secretome analysis identifies novel signal peptide peptidase-like 3 (Sppl3) substrates and reveals a role of Sppl3 in multiple Golgi glycosylation pathways. Mol. Cell. Proteom.14, 1584–1598 (2015). CASGoogle Scholar
  35. Schjoldager, K. T.-B. G. et al. A systematic study of site-specific GalNAc-type O-glycosylation modulating proprotein convertase processing. J. Biol. Chem.286, 40122–40132 (2011). CASPubMedGoogle Scholar
  36. Shifley, E. T. & Cole, S. E. Lunatic fringe protein processing by proprotein convertases may contribute to the short protein half-life in the segmentation clock. Biochim. Biophys. Acta1783, 2384–2390 (2008). CASPubMedGoogle Scholar
  37. Paulson, J. C. & Colley, K. J. Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J. Biol. Chem.264, 17615–17618 (1989). CASPubMedGoogle Scholar
  38. Liefhebber, J. M., Punt, S., Spaan, W. J. & van Leeuwen, H. C. The human collagen β(1-O)galactosyltransferase, GLT25D1, is a soluble endoplasmic reticulum localized protein. BMC Cell Biol.11, 33 (2010). PubMedPubMed CentralGoogle Scholar
  39. Harvey, B. M. & Haltiwanger, R. S. Regulation of Notch function by O-glycosylation. Adv. Exp. Med. Biol.1066, 59–78 (2018). CASPubMedGoogle Scholar
  40. Ogawa, M. et al. GTDC2 modifies O-mannosylated α-dystroglycan in the endoplasmic reticulum to generate N-acetyl glucosamine epitopes reactive with CTD110.6 antibody. Biochem. Biophys. Res. Commun.440, 88–93 (2013). CASPubMedGoogle Scholar
  41. Snider, M. D. & Rogers, O. C. Intracellular movement of cell surface receptors after endocytosis: resialylation of asialo-transferrin receptor in human erythroleukemia cells. J. Cell Biol.100, 826–834 (1985). CASPubMedGoogle Scholar
  42. Duncan, J. R. & Kornfeld, S. Intracellular movement of two mannose 6-phosphate receptors: return to the Golgi apparatus. J. Cell Biol.106, 617–628 (1988). CASPubMedGoogle Scholar
  43. Litvinov, S. V. & Hilkens, J. The epithelial sialomucin, episialin, is sialylated during recycling. J. Biol. Chem.268, 21364–21371 (1993). CASPubMedGoogle Scholar
  44. Razawi, H. et al. Evidence for Core 2 to Core 1 O-glycan remodeling during the recycling of MUC1. Glycobiology23, 935–45 (2013). CASPubMedPubMed CentralGoogle Scholar
  45. Gilmour, A. M. et al. A novel epidermal growth factor receptor-signaling platform and its targeted translation in pancreatic cancer. Cell Signal.25, 2587–2603 (2013). CASPubMedGoogle Scholar
  46. Haxho, F., Neufeld, R. J. & Szewczuk, M. R. Neuraminidase-1: a novel therapeutic target in multistage tumorigenesis. Oncotarget7, 40860–40881 (2016). PubMedPubMed CentralGoogle Scholar
  47. Lillehoj, E. P. et al. NEU1 sialidase expressed in human airway epithelia regulates epidermal growth factor receptor (EGFR) and MUC1 protein signaling. J. Biol. Chem.287, 8214–8231 (2012). CASPubMedPubMed CentralGoogle Scholar
  48. Welch, L. G. & Munro, S. A tale of short tails, through thick and thin: investigating the sorting mechanisms of Golgi enzymes. FEBS Lett.593, 2452–2465 (2019). CASPubMedGoogle Scholar
  49. Kellokumpu, S., Hassinen, A. & Glumoff, T. Glycosyltransferase complexes in eukaryotes: long-known, prevalent but still unrecognized. Cell. Mol. Life Sci.73, 305–325 (2016). CASPubMedGoogle Scholar
  50. Moremen, K. W. & Haltiwanger, R. S. Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat. Chem. Biol.15, 853–864 (2019). CASPubMedPubMed CentralGoogle Scholar
  51. de Las Rivas, M., Lira-Navarrete, E., Gerken, T. A. & Hurtado-Guerrero, R. Polypeptide GalNAc-Ts: from redundancy to specificity. Curr. Opin. Struct. Biol.56, 87–96 (2019). PubMedGoogle Scholar
  52. Taujale, R. et al. Deep evolutionary analysis reveals the design principles of fold A glycosyltransferases. eLife9, e54532 (2020). CASPubMedPubMed CentralGoogle Scholar
  53. Kinoshita, T. & Fujita, M. Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. J. Lipid Res.57, 6–24 (2016). CASPubMedPubMed CentralGoogle Scholar
  54. Wild, R. et al. Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation. Science359, 545–550 (2018). CASPubMedGoogle Scholar
  55. Ruiz-Canada, C., Kelleher, D. J. & Gilmore, R. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell136, 272–283 (2009). CASPubMedPubMed CentralGoogle Scholar
  56. Cherepanova, N. A. & Gilmore, R. Mammalian cells lacking either the cotranslational or posttranslocational oligosaccharyltransferase complex display substrate-dependent defects in asparagine linked glycosylation. Sci. Rep.6, 20946 (2016). CASPubMedPubMed CentralGoogle Scholar
  57. Ramírez, A. S., Kowal, J. & Locher, K. P. Cryo–electron microscopy structures of human oligosaccharyltransferase complexes OST-A and OST-B. Science366, 1372–1375 (2019). PubMedGoogle Scholar
  58. Harada, Y., Masahara-Negishi, Y. & Suzuki, T. Cytosolic-free oligosaccharides are predominantly generated by the degradation of dolichol-linked oligosaccharides in mammalian cells. Glycobiology25, 1196–1205 (2015). CASPubMedGoogle Scholar
  59. Lu, H. et al. Mammalian STT3A/B oligosaccharyltransferases segregate N-glycosylation at the translocon from lipid-linked oligosaccharide hydrolysis. Proc. Natl Acad. Sci. USA115, 9557–9562 (2018). CASPubMedPubMed CentralGoogle Scholar
  60. Shan, A. et al. Polypeptide N-acetylgalactosaminyltransferase 18 non-catalytically regulates the ER homeostasis and O-glycosylation. Biochim. Biophys. Acta Gen. Subj.1863, 870–882 (2019). CASPubMedGoogle Scholar
  61. Joshi, H. J. et al. GlycoDomainViewer: a bioinformatics tool for contextual exploration of glycoproteomes. Glycobiology28, 131–136 (2018). CASPubMedGoogle Scholar
  62. Schjoldager, K. T. et al. Deconstruction of O-glycosylation–GalNAc-T isoforms direct distinct subsets of the O-glycoproteome. EMBO Rep.16, 1713–1722 (2015). CASPubMedPubMed CentralGoogle Scholar
  63. Narimatsu, Y. et al. Exploring regulation of protein O-glycosylation in isogenic human HEK293 cells by differential O-glycoproteomics. Mol. Cell. Proteom.18, 1396–1409 (2019). CASGoogle Scholar
  64. Bagdonaite, I. et al. O-glycan initiation directs distinct biological pathways and controls epithelial differentiation. EMBO Rep.21, e48885 (2020). CASPubMedPubMed CentralGoogle Scholar
  65. Wang, S. et al. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions. J. Biol. Chem.293, 7408–7422 (2018). This paper describes a role of site-specific O-glycosylation in regulation of the affinity of LDLR-related receptors. CASPubMedPubMed CentralGoogle Scholar
  66. Tagliabracci, V. S. et al. A single kinase generates the majority of the secreted phosphoproteome. Cell161, 1619–1632 (2015). CASPubMedPubMed CentralGoogle Scholar
  67. Tagliabracci, V. S. et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc. Natl Acad. Sci. USA111, 5520–5 (2014). This paper is the first demonstration of cross-talk between extracellular protein phosphorylation and O-glycosylation. CASPubMedPubMed CentralGoogle Scholar
  68. Bordoli, M. R. et al. A secreted tyrosine kinase acts in the extracellular environment. Cell158, 1033–1044 (2014). CASPubMedPubMed CentralGoogle Scholar
  69. Mehta, A. Y., Heimburg-Molinaro, J., Cummings, R. D. & Goth, C. K. Emerging patterns of tyrosine sulfation and O-glycosylation cross-talk and co-localization. Curr. Opin. Struct. Biol.62, 102–111 (2020). CASPubMedPubMed CentralGoogle Scholar
  70. Yu, H. & Takeuchi, H. Protein O-glucosylation: another essential role of glucose in biology. Curr. Opin. Struct. Biol.56, 64–71 (2019). CASPubMedGoogle Scholar
  71. Holdener, B. C. & Haltiwanger, R. S. Protein O-fucosylation: structure and function. Curr. Opin. Struct. Biol.56, 78–86 (2019). CASPubMedPubMed CentralGoogle Scholar
  72. Ogawa, M. & Okajima, T. Structure and function of extracellular O-GlcNAc. Curr. Opin. Struct. Biol.56, 72–77 (2019). CASPubMedGoogle Scholar
  73. Takeuchi, H. et al. Two novel protein O-glucosyltransferases that modify sites distinct from POGLUT1 and affect Notch trafficking and signaling. Proc. Natl Acad. Sci. USA115, E8395–E8402 (2018). This paper describes the identification and differential functions of POGLUT isoenzymes in glycosylation of NOTCH EGF-like repeats and their regulation of NOTCH functions. CASPubMedPubMed CentralGoogle Scholar
  74. Sakaidani, Y. et al. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1. Biochem. Biophys. Res. Commun.419, 14–19 (2012). CASPubMedGoogle Scholar
  75. Manya, H. et al. Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc. Natl Acad. Sci. USA101, 500–505 (2004). CASPubMedGoogle Scholar
  76. Neubert, P. et al. Mapping the O-mannose glycoproteome in Saccharomyces cerevisiae. Mol. Cell. Proteom.15, 1323–1337 (2016). CASGoogle Scholar
  77. Shcherbakova, A., Tiemann, B., Buettner, F. F. R. & Bakker, H. Distinct C-mannosylation of netrin receptor thrombospondin type 1 repeats by mammalian DPY19L1 and DPY19L3. Proc. Natl Acad. Sci. USA114, 2574–2579 (2017). This paper describes the DPY19L isoenzymes directing C-mannosylation and identifies distinct differences in their substrate preferences. CASPubMedPubMed CentralGoogle Scholar
  78. Roch, C., Kuhn, J., Kleesiek, K. & Götting, C. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans. Biochem. Biophys. Res. Commun.391, 685–691 (2010). CASPubMedGoogle Scholar
  79. Noborn, F. et al. Identification of chondroitin sulfate linkage region glycopeptides reveals prohormones as a novel class of proteoglycans. Mol. Cell. Proteom.14, 41–49 (2015). CASGoogle Scholar
  80. Hennet, T. Collagen glycosylation. Curr. Opin. Struct. Biol.56, 131–138 (2019). CASPubMedGoogle Scholar
  81. Scietti, L. et al. Molecular architecture of the multifunctional collagen lysyl hydroxylase and glycosyltransferase LH3. Nat. Commun.9, 3163 (2018). PubMedPubMed CentralGoogle Scholar
  82. Slawson, C. & Hart, G. W. O-GlcNAc signalling: implications for cancer cell biology. Nat. Rev. Cancer11, 678–684 (2011). CASPubMedPubMed CentralGoogle Scholar
  83. Lazarus, M. B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature469, 564–567 (2011). CASPubMedPubMed CentralGoogle Scholar
  84. Tsuji, S., Datta, A. K. & Paulson, J. C. Systematic nomenclature for sialyltransferases. Glycobiology6, v–vii (1996). CASPubMedGoogle Scholar
  85. Oriol, R., Mollicone, R., Cailleau, A., Balanzino, L. & Breton, C. Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology9, 323–334 (1999). CASPubMedGoogle Scholar
  86. Nagae, M., Yamaguchi, Y., Taniguchi, N. & Kizuka, Y. 3D structure and function of glycosyltransferases involved in N-glycan maturation. Int J. Mol. Sci.21, 437 (2020). CASPubMed CentralGoogle Scholar
  87. Honke, K. & Taniguchi, N. Sulfotransferases and sulfated oligosaccharides. Med. Res. Rev.22, 637–654 (2002). CASPubMedGoogle Scholar
  88. Esko, J. D. & Selleck, S. B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem.71, 435–471 (2002). CASPubMedGoogle Scholar
  89. Mikami, T. & Kitagawa, H. Biosynthesis and function of chondroitin sulfate. Biochim. Biophys. Acta1830, 4719–4733 (2013). CASPubMedGoogle Scholar
  90. Kitayama, K., Hayashida, Y., Nishida, K. & Akama, T. O. Enzymes responsible for synthesis of corneal keratan sulfate glycosaminoglycans. J. Biol. Chem.282, 30085–30096 (2007). CASPubMedGoogle Scholar
  91. Yoshida-Moriguchi, T. et al. SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science341, 896–899 (2013). CASPubMedGoogle Scholar
  92. Sheikh, M. O., Halmo, S. M. & Wells, L. Recent advancements in understanding mammalian O-mannosylation. Glycobiology27, 806–819 (2017). CASPubMedPubMed CentralGoogle Scholar
  93. Koike, T., Izumikawa, T., Tamura, J.-I. & Kitagawa, H. FAM20B is a kinase that phosphorylates xylose in the glycosaminoglycan–protein linkage region. Biochem. J.421, 157–162 (2009). CASPubMedGoogle Scholar
  94. Wen, J. et al. Xylose phosphorylation functions as a molecular switch to regulate proteoglycan biosynthesis. Proc. Natl Acad. Sci. USA111, 15723–15728 (2014). CASPubMedPubMed CentralGoogle Scholar
  95. Duan, S. & Paulson, J. C. Siglecs as immune cell checkpoints in disease. Annu. Rev. Immunol.38, 365–395 (2020). CASPubMedGoogle Scholar
  96. Baumann, A.-M. T. et al. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate. Nat. Commun.6, 7673 (2015). CASPubMedGoogle Scholar
  97. Orizio, F. et al. Human sialic acid acetyl esterase: towards a better understanding of a puzzling enzyme. Glycobiology25, 992–1006 (2015). CASPubMedGoogle Scholar
  98. Vlasak, R., Luytjes, W., Spaan, W. & Palese, P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc. Natl Acad. Sci. USA85, 4526–4529 (1988). CASPubMedPubMed CentralGoogle Scholar
  99. Barb, A. W. & Prestegard, J. H. NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat. Chem. Biol.7, 147–153 (2011). CASPubMedPubMed CentralGoogle Scholar
  100. Krapp, S., Mimura, Y., Jefferis, R., Huber, R. & Sondermann, P. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J. Mol. Biol.325, 979–989 (2003). CASPubMedGoogle Scholar
  101. Bowden, T. A. et al. Chemical and structural analysis of an antibody folding intermediate trapped during glycan biosynthesis. J. Am. Chem. Soc.134, 17554–17563 (2012). CASPubMedPubMed CentralGoogle Scholar
  102. Patel, K. R., Roberts, J. T. & Barb, A. W. Multiple variables at the leukocyte cell surface impact Fcγ receptor-dependent mechanisms. Front. Immunol.10, 223 (2019). CASPubMedPubMed CentralGoogle Scholar
  103. Ye, Z., Mao, Y., Clausen, H. & Vakhrushev, S. Y. Glyco-DIA: a method for quantitative O-glycoproteomics with in silico-boosted glycopeptide libraries. Nat. Methods16, 902–910 (2019). CASPubMedGoogle Scholar
  104. Kornfeld, S. Trafficking of lysosomal enzymes in normal and disease states. J. Clin. Invest.77, 1–6 (1986). CASPubMedPubMed CentralGoogle Scholar
  105. Reitman, M. L. & Kornfeld, S. Lysosomal enzyme targeting. N-Acetylglucosaminylphosphotransferase selectively phosphorylates native lysosomal enzymes. J. Biol. Chem.256, 11977–11980 (1981). CASPubMedGoogle Scholar
  106. Schnaar, R. L., Gerardy-Schahn, R. & Hildebrandt, H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol. Rev.94, 461–518 (2014). PubMedPubMed CentralGoogle Scholar
  107. Bhide, G. P., Prehna, G., Ramirez, B. E. & Colley, K. J. The polybasic region of the polysialyltransferase ST8Sia-IV binds directly to the neural cell adhesion molecule, NCAM. Biochemistry56, 1504–1517 (2017). CASPubMedGoogle Scholar
  108. Bhide, G. P., Fernandes, N. R. J. & Colley, K. J. Sequence requirements for neuropilin-2 recognition by ST8SiaIV and polysialylation of its O-glycans. J. Biol. Chem.291, 9444–9457 (2016). CASPubMedPubMed CentralGoogle Scholar
  109. Marcus, D. M. & Cass, L. E. Glycosphingolipids with Lewis blood group activity: uptake by human erythrocytes. Science164, 553–555 (1969). CASPubMedGoogle Scholar
  110. Parry, S. et al. The sperm agglutination antigen-1 (SAGA-1) glycoforms of CD52 are O-glycosylated. Glycobiology17, 1120–1126 (2007). CASPubMedGoogle Scholar
  111. Wandall, H. H. et al. The origin and function of platelet glycosyltransferases. Blood120, 626–635 (2012). CASPubMedPubMed CentralGoogle Scholar
  112. Manhardt, C. T., Punch, P. R., Dougher, C. W. L. & Lau, J. T. Y. Extrinsic sialylation is dynamically regulated by systemic triggers in vivo. J. Biol. Chem.292, 13514–13520 (2017). CASPubMedPubMed CentralGoogle Scholar
  113. Jones, M. B. et al. B-cell-independent sialylation of IgG. Proc. Natl Acad. Sci. USA113, 7207–7212 (2016). CASPubMedPubMed CentralGoogle Scholar
  114. Irons, E. E. et al. B cells suppress medullary granulopoiesis by an extracellular glycosylation-dependent mechanism. eLife8, e47328 (2019). CASPubMedPubMed CentralGoogle Scholar
  115. Zhang, Q. et al. Transfer of functional cargo in exomeres. Cell Rep.27, 940–954.e6 (2019). CASPubMedPubMed CentralGoogle Scholar
  116. Lu, Q., Li, S. & Shao, F. Sweet talk: protein glycosylation in bacterial interaction with the host. Trends Microbiol.23, 630–641 (2015). CASPubMedGoogle Scholar
  117. El Qaidi, S. et al. NleB/SseK effectors from Citrobacter rodentium, Escherichia coli, and Salmonella enterica display distinct differences in host substrate specificity. J. Biol. Chem.292, 11423–11430 (2017). CASPubMedPubMed CentralGoogle Scholar
  118. Li, S. et al. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature501, 242–246 (2013). CASPubMedGoogle Scholar
  119. Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem.73, 1019–1049 (2004). CASPubMedGoogle Scholar
  120. Vasudevan, D., Takeuchi, H., Johar, S. S., Majerus, E. & Haltiwanger, R. S. Peters plus syndrome mutations disrupt a noncanonical ER quality-control mechanism. Curr. Biol.25, 286–295 (2015). CASPubMedGoogle Scholar
  121. Takeuchi, H. et al. O-Glycosylation modulates the stability of epidermal growth factor-like repeats and thereby regulates Notch trafficking. J. Biol. Chem.292, 15964–15973 (2017). CASPubMedPubMed CentralGoogle Scholar
  122. Ogawa, M., Tashima, Y., Sakaguchi, Y., Takeuchi, H. & Okajima, T. Contribution of extracellular O-GlcNAc to the stability of folded epidermal growth factor-like domains and Notch1 trafficking. Biochem. Biophys. Res. Commun.526, 184–190 (2020). CASPubMedGoogle Scholar
  123. Goth, C. K., Vakhrushev, S. Y., Joshi, H. J., Clausen, H. & Schjoldager, K. T. Fine-tuning limited proteolysis: a major role for regulated site-specific O-glycosylation. Trends Biochem. Sci.43, 269–284 (2018). CASPubMedGoogle Scholar
  124. Goth, C. K. et al. A systematic study of modulation of ADAM-mediated ectodomain shedding by site-specific O-glycosylation. Proc. Natl Acad. Sci. USA112, 14623–14628 (2015). CASPubMedPubMed CentralGoogle Scholar
  125. Goth, C. K. et al. Site-specific O-glycosylation by polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) co-regulates β1-adrenergic receptor N-terminal cleavage. J. Biol. Chem.292, 4714–4726 (2017). CASPubMedPubMed CentralGoogle Scholar
  126. Hansen, L. H. et al. Discovery of O-glycans on atrial natriuretic peptide (ANP) that affect both its proteolytic degradation and potency at its cognate receptor. J. Biol. Chem.294, 12567–12578 (2019). CASPubMedPubMed CentralGoogle Scholar
  127. Madsen, T. D. et al. An atlas of O-linked glycosylation on peptide hormones reveals diverse biological roles. Nat. Commun.11, 4033 (2020). CASPubMedPubMed CentralGoogle Scholar
  128. Hintze, J. et al. Probing the contribution of individual polypeptide GalNAc-transferase isoforms to the O-glycoproteome by inducible expression in isogenic cell lines. J. Biol. Chem.293, 19064–19077 (2018). CASPubMedPubMed CentralGoogle Scholar
  129. Kato, K. et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J. Biol. Chem.281, 18370–18377 (2006). CASPubMedGoogle Scholar
  130. Takashi, Y. et al. Activation of unliganded FGF receptor by extracellular phosphate potentiates proteolytic protection of FGF23 by its O-glycosylation. Proc. Natl Acad. Sci. USA116, 11418–11427 (2019). CASPubMedPubMed CentralGoogle Scholar
  131. Larsen, I. S. B., Narimatsu, Y., Clausen, H., Joshi, H. J. & Halim, A. Multiple distinct O-mannosylation pathways in eukaryotes. Curr. Opin. Struct. Biol.56, 171–178 (2019). CASPubMedGoogle Scholar
  132. Rexach, J. E. et al. Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation. Nat. Chem. Biol.8, 253–261 (2012). CASPubMedPubMed CentralGoogle Scholar
  133. Tarbet, H. J. et al. Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton. eLife7, e31807 (2018). PubMedPubMed CentralGoogle Scholar
  134. Dennis, J. W. & Brewer, C. F. Density-dependent lectin-glycan interactions as a paradigm for conditional regulation by posttranslational modifications. Mol. Cell. Proteom.12, 913–20 (2013). CASGoogle Scholar
  135. Granovsky, M. et al. Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med.6, 306–312 (2000). CASPubMedGoogle Scholar
  136. Martínez Allo, V. C. et al. Suppression of age-related salivary gland autoimmunity by glycosylation-dependent galectin-1-driven immune inhibitory circuits. Proc. Natl Acad. Sci. USA117, 6630–6639 (2020). PubMedPubMed CentralGoogle Scholar
  137. Demetriou, M., Nabi, I. R., Coppolino, M., Dedhar, S. & Dennis, J. W. Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V. J. Cell Biol.130, 383–392 (1995). CASPubMedGoogle Scholar
  138. Nakano, M. et al. Bisecting GlcNAc is a general suppressor of terminal modification of N-glycan. Mol. Cell. Proteom.18, 2044–2057 (2019). Google Scholar
  139. Isaji, T. et al. Introduction of bisecting GlcNAc into integrin α5β1 reduces ligand binding and down-regulates cell adhesion and cell migration. J. Biol. Chem.279, 19747–19754 (2004). CASPubMedGoogle Scholar
  140. Wang, X. et al. Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J. Biol. Chem.281, 2572–2577 (2006). CASPubMedGoogle Scholar
  141. Liang, W. et al. Core fucosylation of the T cell receptor is required for T cell activation. Front. Immunol.9, 78 (2018). PubMedPubMed CentralGoogle Scholar
  142. Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J. Biol. Chem.277, 26733–26740 (2002). This paper identifies core fucose on the N-glycans of IgG1 in regulation of antibody effector functions. CASPubMedGoogle Scholar
  143. Nguyen, J. T. et al. CD45 modulates galectin-1-induced T cell death: regulation by expression of Core 2 O-glycans. J. Immunol.167, 5697–5707 (2001). CASPubMedGoogle Scholar
  144. Lee, S. H. et al. Core2 O-glycan structure is essential for the cell surface expression of sucrase isomaltase and dipeptidyl peptidase-IV during intestinal cell differentiation. J. Biol. Chem.285, 37683–37692 (2010). CASPubMedPubMed CentralGoogle Scholar
  145. Halmo, S. M. et al. Protein O-linked mannose β-1,4-N-acetylglucosaminyl-transferase 2 (POMGNT2) is a gatekeeper enzyme for functional glycosylation of α-dystroglycan. J. Biol. Chem.292, 2101–2109 (2017). This paper describes the peptide substrate selectivity of the ER-located POMGNT2 that determines theO-Man glycosites that proceed towards biosynthesis of the elaborated matriglycan.CASPubMedGoogle Scholar
  146. Varki, A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature446, 1023–1029 (2007). CASPubMedGoogle Scholar
  147. Cohen, M. & Varki, A. Modulation of glycan recognition by clustered saccharide patches. Int. Rev. Cell Mol. Biol.308, 75–125 (2014). CASPubMedGoogle Scholar
  148. Giannini, S. et al. β4GALT1 controls β1 integrin function to govern thrombopoiesis and hematopoietic stem cell homeostasis. Nat. Commun.11, 356 (2020). CASPubMedPubMed CentralGoogle Scholar
  149. Hennet, T., Chui, D., Paulson, J. C. & Marth, J. D. Immune regulation by the ST6Gal sialyltransferase. Proc. Natl Acad. Sci. USA95, 4504–4509 (1998). CASPubMedPubMed CentralGoogle Scholar
  150. Comelli, E. M. et al. Activation of murine CD4 + and CD8 + T lymphocytes leads to dramatic remodeling of N-linked glycans. J. Immunol.177, 2431–2440 (2006). CASPubMedGoogle Scholar
  151. Priatel, J. J. et al. The ST3Gal-I sialyltransferase controls CD8 + T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity12, 273–283 (2000). CASPubMedGoogle Scholar
  152. Ohtsubo, K. & Marth, J. D. Glycosylation in cellular mechanisms of health and disease. Cell126, 855–867 (2006). CASPubMedGoogle Scholar
  153. Mereiter, S., Balmaña, M., Campos, D., Gomes, J. & Reis, C. A. Glycosylation in the era of cancer-targeted therapy: where are we heading? Cancer Cell36, 6–16 (2019). CASPubMedGoogle Scholar
  154. Ng, B. G. & Freeze, H. H. Perspectives on glycosylation and its congenital disorders. Trends Genet.34, 466–476 (2018). CASPubMedPubMed CentralGoogle Scholar
  155. Zilmer, M. et al. Novel congenital disorder of O-linked glycosylation caused by loss of function of GALNT2. Brain143, 1114–1126 (2020). PubMedPubMed CentralGoogle Scholar
  156. Topaz, O. et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat. Genet.36, 579–581 (2004). CASPubMedGoogle Scholar
  157. Tian, E. et al. Galnt11 regulates kidney function by glycosylating the endocytosis receptor megalin to modulate ligand binding. Proc. Natl Acad. Sci. USA116, 25196–25202 (2019). CASPubMedPubMed CentralGoogle Scholar
  158. Hansen, L. et al. A glycogene mutation map for discovery of diseases of glycosylation. Glycobiology25, 211–224 (2015). CASPubMedGoogle Scholar
  159. Willer, C. J. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet.40, 161–169 (2008). CASPubMedPubMed CentralGoogle Scholar
  160. Khetarpal, S. A. et al. Loss of function of GALNT2 lowers high-density lipoproteins in humans, nonhuman primates, and rodents. Cell Metab.24, 234–245 (2016). This paper describes validation of the first glycosyltransferase gene implicated as a GWAS candidate. CASPubMedPubMed CentralGoogle Scholar
  161. Roman, T. S. et al. Multiple hepatic regulatory variants at the GALNT2 GWAS locus associated with high-density lipoprotein cholesterol. Am. J. Hum. Genet.97, 801–815 (2015). CASPubMedPubMed CentralGoogle Scholar
  162. Cavalli, M., Pan, G., Nord, H. & Wadelius, C. Looking beyond GWAS: allele-specific transcription factor binding drives the association of GALNT2 to HDL-C plasma levels. Lipids Health Dis.15, 18 (2016). PubMedPubMed CentralGoogle Scholar
  163. Duncan, E. L. et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet.7, e1001372 (2011). CASPubMedPubMed CentralGoogle Scholar
  164. de Las Rivas, M. et al. Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3. Nat. Chem. Biol.16, 351–360 (2020). PubMedGoogle Scholar
  165. Taniguchi, N. & Kizuka, Y. Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv. Cancer Res.126, 11–51 (2015). CASPubMedGoogle Scholar
  166. Schultz, M. J., Swindall, A. F. & Bellis, S. L. Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev.31, 501–518 (2012). CASPubMedPubMed CentralGoogle Scholar
  167. Christiansen, M. N. et al. Cell surface protein glycosylation in cancer. Proteomics14, 525–546 (2014). CASPubMedGoogle Scholar
  168. Ju, T. et al. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res.68, 1636–46 (2008). CASPubMedGoogle Scholar
  169. Sun, X., Ju, T. & Cummings, R. D. Differential expression of Cosmc, T-synthase and mucins in Tn-positive colorectal cancers. BMC Cancer18, 827 (2018). PubMedPubMed CentralGoogle Scholar
  170. Radhakrishnan, P. et al. Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc. Natl Acad. Sci. USA111, E4066–E4075 (2014). CASPubMedPubMed CentralGoogle Scholar
  171. Fernandez, A. J. et al. The structure of the colorectal cancer-associated enzyme GalNAc-T12 reveals how nonconserved residues dictate its function. Proc. Natl Acad. Sci. USA116, 20404–20410 (2019). CASPubMedPubMed CentralGoogle Scholar
  172. Büll, C., Stoel, M. A., den Brok, M. H. & Adema, G. J. Sialic acids sweeten a tumor’s life. Cancer Res.74, 3199–3204 (2014). PubMedGoogle Scholar
  173. Dall’Olio, F. & Trinchera, M. Epigenetic bases of aberrant glycosylation in cancer. Int. J. Mol. Sci.18, 998 (2017). PubMed CentralGoogle Scholar
  174. Ashkani, J. & Naidoo, K. J. Glycosyltransferase gene expression profiles classify cancer types and propose prognostic subtypes. Sci. Rep.6, 26451 (2016). CASPubMedPubMed CentralGoogle Scholar
  175. Dusoswa, S. A. et al. Glioblastomas exploit truncated O-linked glycans for local and distant immune modulation via the macrophage galactose-type lectin. Proc. Natl Acad. Sci. USA117, 3693–3703 (2020). CASPubMedPubMed CentralGoogle Scholar
  176. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature578, 82–93 (2020). Google Scholar
  177. Zeng, J. et al. Promoters of human Cosmc and T-synthase genes are similar in structure, yet different in epigenetic regulation. J. Biol. Chem.290, 19018–19033 (2015). CASPubMedPubMed CentralGoogle Scholar
  178. Agrawal, P. et al. Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. Proc. Natl Acad. Sci. USA111, 4338–4343 (2014). CASPubMedPubMed CentralGoogle Scholar
  179. Kurcon, T. et al. miRNA proxy approach reveals hidden functions of glycosylation. Proc. Natl Acad. Sci. USA112, 7327–7332 (2015). CASPubMedPubMed CentralGoogle Scholar
  180. Bhattacharyya, R., Bhaumik, M., Raju, T. S. & Stanley, P. Truncated, inactive N-acetylglucosaminyltransferase III (GlcNAc-TIII) induces neurological and other traits absent in mice that lack GlcNAc-TIII. J. Biol. Chem.277, 26300–26309 (2002). CASPubMedGoogle Scholar
  181. Matsumoto, K. et al. N-Glycan fucosylation of epidermal growth factor receptor modulates receptor activity and sensitivity to epidermal growth factor receptor tyrosine kinase inhibitor. Cancer Sci.99, 1611–1617 (2008). CASPubMedGoogle Scholar
  182. Agrawal, P. et al. A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell31, 804–819.e7 (2017). CASPubMedPubMed CentralGoogle Scholar
  183. Okada, M. et al. Blockage of core fucosylation reduces cell-surface expression of PD-1 and promotes anti-tumor immune responses of T cells. Cell Rep.20, 1017–1028 (2017). CASPubMedGoogle Scholar
  184. Marcos, N. T. et al. Role of the human ST6GalNAc-I and ST6GalNAc-II in the synthesis of the cancer-associated Sialyl-Tn antigen. Cancer Res.64, 7050–7057 (2004). CASPubMedGoogle Scholar
  185. Sewell, R. et al. The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J. Biol. Chem.281, 3586–3594 (2006). CASPubMedGoogle Scholar
  186. Tarp, M. A. & Clausen, H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim. Biophys. Acta1780, 546–563 (2008). CASPubMedGoogle Scholar
  187. Kudelka, M. R., Ju, T., Heimburg-Molinaro, J. & Cummings, R. D. Simple sugars to complex disease — mucin-type O-glycans in cancer. Adv. Cancer Res.126, 53–135 (2015). CASPubMedPubMed CentralGoogle Scholar
  188. Sutherlin, M. E. et al. Expression of three UDP-N-acetyl-α- d -galactosamine:polypeptide GalNAc N-acetylgalactosaminyltransferases in adenocarcinoma cell lines. Cancer Res.57, 4744–4748 (1997). CASPubMedGoogle Scholar
  189. Freire, T. et al. UDP-N-acetyl- d -galactosamine:polypeptide N-acetylgalactosaminyltransferase 6 (ppGalNAc-T6) mRNA as a potential new marker for detection of bone marrow-disseminated breast cancer cells. Int. J. Cancer119, 1383–1388 (2006). CASPubMedGoogle Scholar
  190. Song, K.-H. et al. GALNT14 promotes lung-specific breast cancer metastasis by modulating self-renewal and interaction with the lung microenvironment. Nat. Commun.7, 13796 (2016). CASPubMedPubMed CentralGoogle Scholar
  191. Kitada, S. et al. Polypeptide N-acetylgalactosaminyl transferase 3 independently predicts high-grade tumours and poor prognosis in patients with renal cell carcinomas. Br. J. Cancer109, 472–481 (2013). CASPubMedPubMed CentralGoogle Scholar
  192. Lavrsen, K. et al. De novo expression of human polypeptide N-acetylgalactosaminyltransferase 6 (GalNAc-T6) in colon adenocarcinoma inhibits the differentiation of colonic epithelium. J. Biol. Chem.293, 1298–1314 (2018). CASPubMedGoogle Scholar
  193. Dalziel, M. et al. The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O-glycan structure and expression of a tumor-associated epitope on MUC1. J. Biol. Chem.276, 11007–11015 (2001). CASPubMedGoogle Scholar
  194. Swindall, A. F. & Bellis, S. L. Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J. Biol. Chem.286, 22982–22990 (2011). CASPubMedPubMed CentralGoogle Scholar
  195. Holdbrooks, A. T., Britain, C. M. & Bellis, S. L. ST6Gal-I sialyltransferase promotes tumor necrosis factor (TNF)-mediated cancer cell survival via sialylation of the TNF receptor 1 (TNFR1) death receptor. J. Biol. Chem.293, 1610–1622 (2018). CASPubMedGoogle Scholar
  196. Barthel, S. R. et al. α1,3 Fucosyltransferases are master regulators of prostate cancer cell trafficking. Proc. Natl Acad. Sci. USA106, 19491–19496 (2009). CASPubMedPubMed CentralGoogle Scholar
  197. Esposito, M. et al. Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nat. Cell Biol.21, 627–639 (2019). CASPubMedPubMed CentralGoogle Scholar
  198. Engle, D. D. et al. The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice. Science364, 1156–1162 (2019). CASPubMedPubMed CentralGoogle Scholar
  199. Guo, H. et al. O-Linked N-acetylglucosamine (O-GlcNAc) expression levels epigenetically regulate colon cancer tumorigenesis by affecting the cancer stem cell compartment via modulating expression of transcriptional factor MYBL1. J. Biol. Chem.292, 4123–4137 (2017). CASPubMedPubMed CentralGoogle Scholar
  200. Hanover, J. A., Chen, W. & Bond, M. R. O-GlcNAc in cancer: an oncometabolism-fueled vicious cycle. J. Bioenerg. Biomembr.50, 155–173 (2018). CASPubMedGoogle Scholar
  201. Theocharis, A. D. & Karamanos, N. K. Proteoglycans remodeling in cancer: underlying molecular mechanisms. Matrix Biol.75–76, 220–259 (2019). PubMedGoogle Scholar
  202. Salanti, A. et al. Targeting human cancer by a glycosaminoglycan binding malaria protein. Cancer Cell28, 500–514 (2015). This paper identifies a broadly expressed cancer-associated 4-O-sulfated chondroitin sulfate epitope using the malarial receptor VAR2CSA. CASPubMedPubMed CentralGoogle Scholar
  203. Chen, Y.-H. et al. The GAGOme: a cell-based library of displayed glycosaminoglycans. Nat. Methods15, 881–888 (2018). This paper describes the development of a cell-based display of glycosaminoglycans. CASPubMedGoogle Scholar
  204. Petrosyan, A. Unlocking Golgi: why does morphology matter? Biochemistry84, 1490–1501 (2019). CASPubMedGoogle Scholar
  205. Kulkarni-Gosavi, P., Makhoul, C. & Gleeson, P. A. Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Lett.593, 2289–2305 (2019). CASPubMedGoogle Scholar
  206. Petrosyan, A. Onco-Golgi: is fragmentation a gate to cancer progression? Biochem. Mol. Biol. J.https://doi.org/10.21767/2471-8084.100006 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  207. Chia, J., Goh, G. & Bard, F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim. Biophys. Acta1860, 1623–1639 (2016). CASPubMedGoogle Scholar
  208. Gill, D. J., Clausen, H. & Bard, F. Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol.21, 149–158 (2011). CASPubMedGoogle Scholar
  209. Axelsson, M. A. B. et al. Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins. Glycobiology11, 633–644 (2001). CASPubMedGoogle Scholar
  210. Chatterjee, S. et al. Protein paucimannosylation is an enriched N-glycosylation signature of human cancers. Proteomics19, e1900010 (2019). PubMedGoogle Scholar
  211. Chia, J., Tay, F. & Bard, F. The GalNAc-T Activation (GALA) pathway: drivers and markers. PLoS ONE14, e0214118 (2019). CASPubMedPubMed CentralGoogle Scholar
  212. Nguyen, A. T. et al. Organelle specific O-glycosylation drives MMP14 activation, tumor growth, and metastasis. Cancer Cell32, 639–653.e6 (2017). CASPubMedGoogle Scholar
  213. Yamaji, T. et al. A CRISPR screen using subtilase cytotoxin identifies SLC39A9 as a glycan-regulating factor. iScience15, 407–420 (2019). CASPubMedPubMed CentralGoogle Scholar
  214. Narimatsu, Y. et al. A validated gRNA library for CRISPR/Cas9 targeting of the human glycosyltransferase genome. Glycobiology28, 295–305 (2018). CASPubMedGoogle Scholar
  215. Narimatsu, Y. et al. An atlas of human glycosylation pathways enables display of the human glycome by gene engineered cells. Mol. Cell75, 394–407.e5 (2019). This paper describes the development and utility of a cell-based display of the human glycome. CASPubMedPubMed CentralGoogle Scholar
  216. Yang, Z. et al. Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat. Biotechnol.33, 842–844 (2015). CASPubMedGoogle Scholar
  217. Patnaik, S. K. & Stanley, P. Lectin-resistant CHO glycosylation mutants. Methods Enzymol.416, 159–182 (2006). CASPubMedGoogle Scholar
  218. Steentoft, C. et al. Precision genome editing: a small revolution for glycobiology. Glycobiology24, 663–680 (2014). CASPubMedGoogle Scholar
  219. Jae, L. T. et al. Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science340, 479–483 (2013). CASPubMedPubMed CentralGoogle Scholar
  220. Han, J. et al. Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication. Cell Rep.23, 596–607 (2018). CASPubMedPubMed CentralGoogle Scholar
  221. Ye, L. et al. In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat. Biotechnol.37, 1302–1313 (2019). CASPubMedPubMed CentralGoogle Scholar
  222. Miller, R. L. et al. Shotgun ion mobility mass spectrometry sequencing of heparan sulfate saccharides. Nat. Commun.11, 1481 (2020). CASPubMedPubMed CentralGoogle Scholar
  223. Stopschinski, B. E. et al. Specific glycosaminoglycan chain length and sulfation patterns are required for cell uptake of tau versus α-synuclein and β-amyloid aggregates. J. Biol. Chem.293, 10826–10840 (2018). CASPubMedPubMed CentralGoogle Scholar
  224. Tian, S. et al. Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol.16, e2006951 (2018). PubMedPubMed CentralGoogle Scholar
  225. Dabelsteen, S. et al. Essential functions of glycans in human epithelia dissected by a CRISPR–Cas9-engineered human organotypic skin model. Dev. Cell54, 669–684 (2020). PubMedPubMed CentralGoogle Scholar
  226. Büll, C., Joshi, H. J., Clausen, H. & Narimatsu, Y. Cell-based glycan arrays — a practical guide to dissect the human glycome. STAR Protoc.1, 100017 (2020). PubMedPubMed CentralGoogle Scholar
  227. Naegeli, A. & Aebi, M. Current approaches to engineering N-linked protein glycosylation in bacteria. Methods Mol. Biol.1321, 3–16 (2015). PubMedGoogle Scholar
  228. Hudak, J. E. & Bertozzi, C. R. Glycotherapy: new advances inspire a reemergence of glycans in medicine. Chem. Biol.21, 16–37 (2014). CASPubMedGoogle Scholar
  229. Van Landuyt, L., Lonigro, C., Meuris, L. & Callewaert, N. Customized protein glycosylation to improve biopharmaceutical function and targeting. Curr. Opin. Biotechnol.60, 17–28 (2019). PubMedGoogle Scholar
  230. Montero-Morales, L. & Steinkellner, H. Advanced plant-based glycan engineering. Front. Bioeng. Biotechnol.6, 81 (2018). PubMedPubMed CentralGoogle Scholar
  231. Walsh, G. Post-translational modifications of protein biopharmaceuticals. Drug Discov. Today15, 773–780 (2010). CASPubMedGoogle Scholar
  232. Čaval, T., Tian, W., Yang, Z., Clausen, H. & Heck, A. J. R. Direct quality control of glycoengineered erythropoietin variants. Nat. Commun.9, 3342 (2018). PubMedPubMed CentralGoogle Scholar
  233. Grabowski, G. A. et al. Enzyme therapy in type 1 Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann. Intern. Med.122, 33–39 (1995). CASPubMedGoogle Scholar
  234. Umaña, P., Jean-Mairet, J., Moudry, R., Amstutz, H. & Bailey, J. E. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol.17, 176–180 (1999). PubMedGoogle Scholar
  235. Yamane-Ohnuki, N. et al. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol. Bioeng.87, 614–622 (2004). CASPubMedGoogle Scholar
  236. Meuris, L. et al. GlycoDelete engineering of mammalian cells simplifies N-glycosylation of recombinant proteins. Nat. Biotechnol.32, 485–489 (2014). CASPubMedPubMed CentralGoogle Scholar
  237. Chang, M. M. et al. Small-molecule control of antibody N-glycosylation in engineered mammalian cells. Nat. Chem. Biol.15, 730–736 (2019). CASPubMedGoogle Scholar
  238. Schulz, M. A. et al. Glycoengineering design options for IgG1 in CHO cells using precise gene editing. Glycobiology28, 542–549 (2018). CASPubMedGoogle Scholar
  239. Tian, W. et al. The glycosylation design space for recombinant lysosomal replacement enzymes produced in CHO cells. Nat. Commun.10, 1785 (2019). PubMedPubMed CentralGoogle Scholar
  240. RodrÍguez, E., Schetters, S. T. T. & van Kooyk, Y. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat. Rev. Immunol.18, 204–211 (2018). PubMedGoogle Scholar
  241. Mathiesen, C. B. K. et al. Genetically engineered cell factories produce glycoengineered vaccines that target antigen-presenting cells and reduce antigen-specific T-cell reactivity. J. Allergy Clin. Immunol.142, 1983–1987 (2018). CASPubMedGoogle Scholar
  242. Byrne, G. et al. CRISPR/Cas9 gene editing for the creation of an MGAT1-deficient CHO cell line to control HIV-1 vaccine glycosylation. PLoS Biol.16, e2005817 (2018). PubMedPubMed CentralGoogle Scholar
  243. Zhang, R. et al. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH. Acta Biomater.72, 196–205 (2018). CASPubMedGoogle Scholar
  244. Liu, Q. P. et al. Identification of a GH110 subfamily of α1,3-galactosidases: novel enzymes for removal of the α3Gal xenotransplantation antigen. J. Biol. Chem.283, 8545–8554 (2008). CASPubMedPubMed CentralGoogle Scholar
  245. Ibrahim, A. M. S. et al. Acellular dermal matrices in breast surgery: a comprehensive review. Ann. Plast. Surg.70, 732–738 (2013). CASPubMedGoogle Scholar
  246. Neelamegham, S. et al. Updates to the Symbol Nomenclature for Glycans guidelines. Glycobiology29, 620–624 (2019). CASPubMedPubMed CentralGoogle Scholar
  247. Parker, J. L. & Newstead, S. Gateway to the Golgi: molecular mechanisms of nucleotide sugar transporters. Curr. Opin. Struct. Biol.57, 127–134 (2019). CASPubMedPubMed CentralGoogle Scholar
  248. Nabi, I. R., Shankar, J. & Dennis, J. W. The galectin lattice at a glance. J. Cell Sci.128, 2213–2219 (2015). CASPubMedGoogle Scholar
  249. Ilver, D. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science279, 373–377 (1998). CASPubMedGoogle Scholar
  250. Mahdavi, J. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science297, 573–578 (2002). CASPubMedPubMed CentralGoogle Scholar
  251. Rossez, Y. et al. The LacdiNAc-specific adhesin LabA mediates adhesion of Helicobacter pylori to human gastric mucosa. J. Infect. Dis.210, 1286–1295 (2014). CASPubMedGoogle Scholar
  252. Nagae, M. et al. Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nat. Commun.9, 3380 (2018). PubMedPubMed CentralGoogle Scholar
  253. Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer15, 540–555 (2015). CASPubMedGoogle Scholar
  254. Läubli, H. & Varki, A. Sialic acid-binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses. Cell. Mol. Life Sci.77, 593–605 (2020). PubMedGoogle Scholar
  255. Maxson, J. E. et al. Ligand-independence of the colony stimulating factor 3 receptor (CSF3R) T618I mutation results from loss of O-linked glycosylation and increased receptor dimerization. J. Biol. Chem.289, 5820–5827.(2014). CASPubMedPubMed CentralGoogle Scholar
  256. Jiang, Y. et al. O-glycans on death receptors in cells modulate their sensitivity to TRAIL-induced apoptosis through affecting on their stability and oligomerization. FASEB J.34, 11786–11801 (2020). CASPubMedGoogle Scholar
  257. Rillahan, C. D. & Paulson, J. C. Glycan microarrays for decoding the glycome. Annu. Rev. Biochem.80, 797–823 (2011). CASPubMedPubMed CentralGoogle Scholar
  258. Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl Acad. Sci. USA101, 17033–17038 (2004). CASPubMedPubMed CentralGoogle Scholar

Acknowledgements

The authors are grateful to R. Schnaar and B. Henrissat for discussions and critical comments on the manuscript. They thank H. Wandall, A. Halim, C. Büll, Y. Zhang and L. Hansen for help with the manuscript, and all members of the Copenhagen Center for Glycomics for discussions. Supported by the Lundbeck Foundation, the Novo Nordisk Foundation and the Danish National Research Foundation (DNRF107).